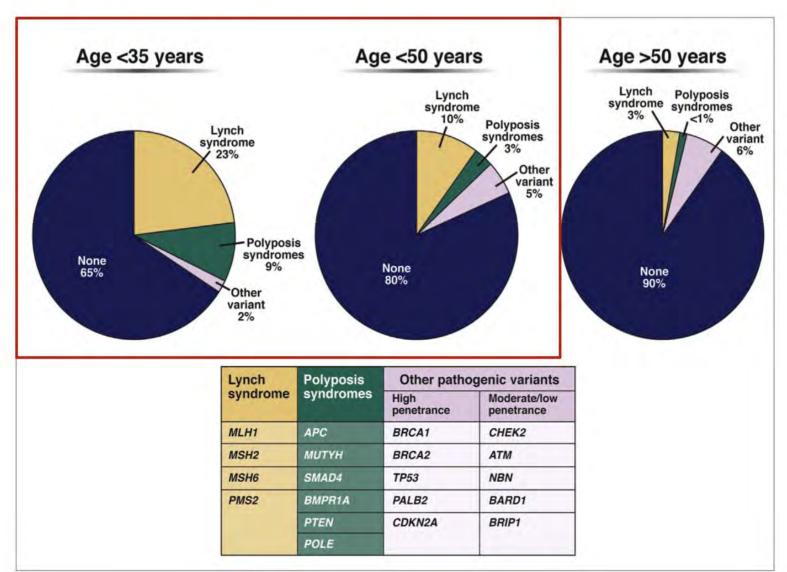


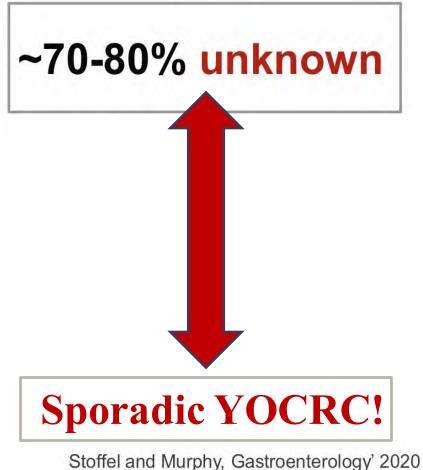
Young Onset CRC: What's New about Biology and Treatment in Advanced Disease?

Virtual Patient Conference – May 20, 2023

Benny Johnson, DO Assistant Professor Department of Gastrointestinal Medical Oncology The University of Texas - MD Anderson Cancer Center HE UNIVERSITY OF TEXAS

MD Anderson Cancer Center


Making Cancer History*

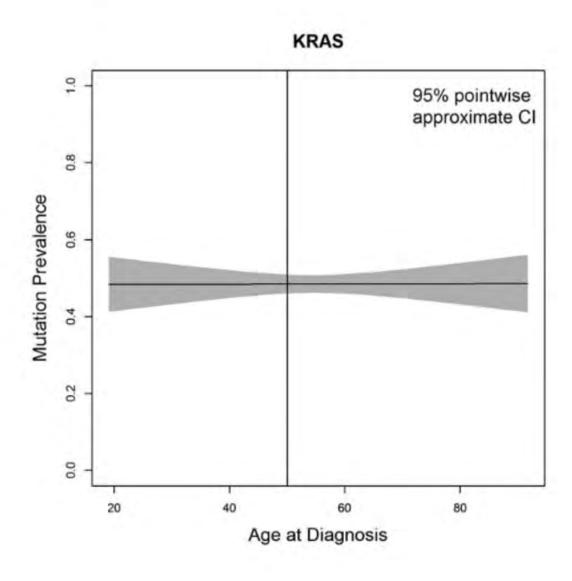

AGENDA

- 1. Biology
- 2. Treatment
- 3. Circulating tumor DNA & Minimal Residual Disease
- 4. Conclusions

KEY BIOLOGIC ASPECTS OF YOCKC

Genes of YOCRC

MDACC Dataset + AACR GENIE

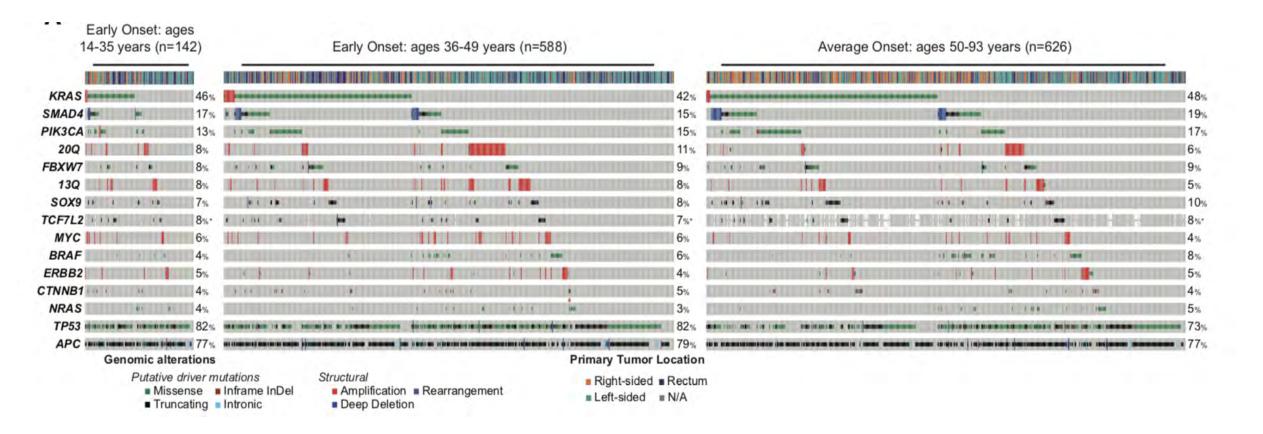

36,000 pts	MDACC Molecular Cohort	MDACC Tumor Registry Cuhort	AACR Project GENIE Cohort	CMS Cohort
Patient Information	 N=1877 Seen at MDACC from January 1, 2012 to September 1, 2016 	N=32507 Seen at MDACC from January 1, 1980 to present	N=1868 Excluded patients from MDACC to prevent duplication of data	 Total N=626 N=448 from TCGA N=178 from MDACC
Clinical Data	Baseline clinical and pathologic characteristics	Baseline clinical and pathologic characteristics	Limited clinical and pathologic characteristics	Limited clinical and pathologic characteristics
Molecular Data	Mutational data available from 46- or 50-gene CLIA next- generation sequencing panel	Unavailable	Mutation data available from AACR Project GENIE database, which includes a mixture of next-generation sequencing platforms	 RNA expression data. For TCGA patients, data were publicly available. For MDACC patients, data were obtained with Affymetrix RNA expression arrays.
Cancer Stage(s)	Stage IV	Stages I-IV	Majority stage IV	Stages I-IV
Additional Data	Comorbid predisposing condition information available for patients < 50 years			Classification by CMS subtype


Foundation Medicine

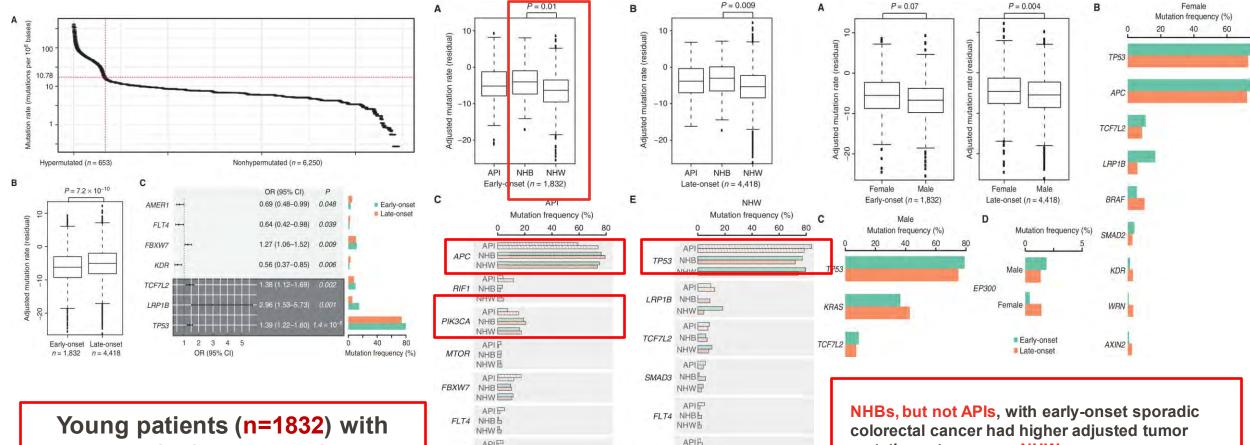
18,218 total patients

- 1,420 patients under the age of 40
- 3,248 between 40 and 49
- 13,550 age 50 and older

No significant difference in KRAS, NRAS mutations



Foundation One molecular testing -> CTNNB1, TP53


Table 1. Significant alterations and alterations in genes of interest between cohorts using false discovery rate (FDR) in MSS colorectal cancer (CRC) and MSI-H colorectal cancer

Alteration rates in the MSS cohort			
	Rate observed in under	Rate observed in 50 and	
Gene	40 group (%)	over group (%)	FDR
TP53	82.3	76.7	1.56E-05
APC	65.8	79.7	4.84E-26
KRAS	45.6	52.4	1.56E-05
PIK3CA	14.1	17.5	0.002959601
CTNNB1	4	2.7	0.013488987
BRAF	5.2	7.7	0.002067048
FAM123B	2	6.8	1.35E-12
NRAS	3.7	4.6	0.171847712

Real world data @MSKCC: No major genomic differences between YOCRC and average onset CRC

YOCRC Biology differs based on race and sex; n=6903 pts (NHW, NHB, API)

KDR NHB

FBXW7 NHB

RNF43 NHBP

NHWB

API

NHW

API

NHWB

APIET BRAF NHB

NHW

NHB

NHWB

ATRX NHB

API

NHW

Early-onset

Late-onset

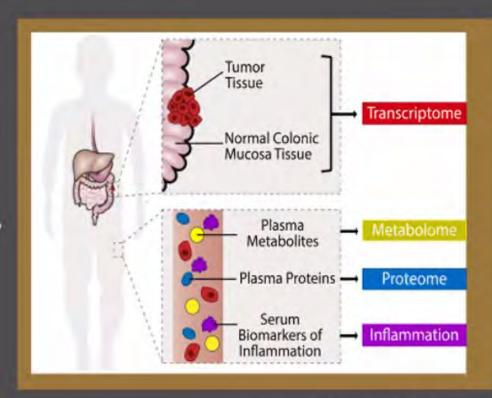
NHB

Mutation frequency (%)

sporadic CRC had significantly higher odds of presenting with nonsilent mutations in *TP53*, LRP1B, TCF7L2, and FBXW7

mutation rates versus NHWs.

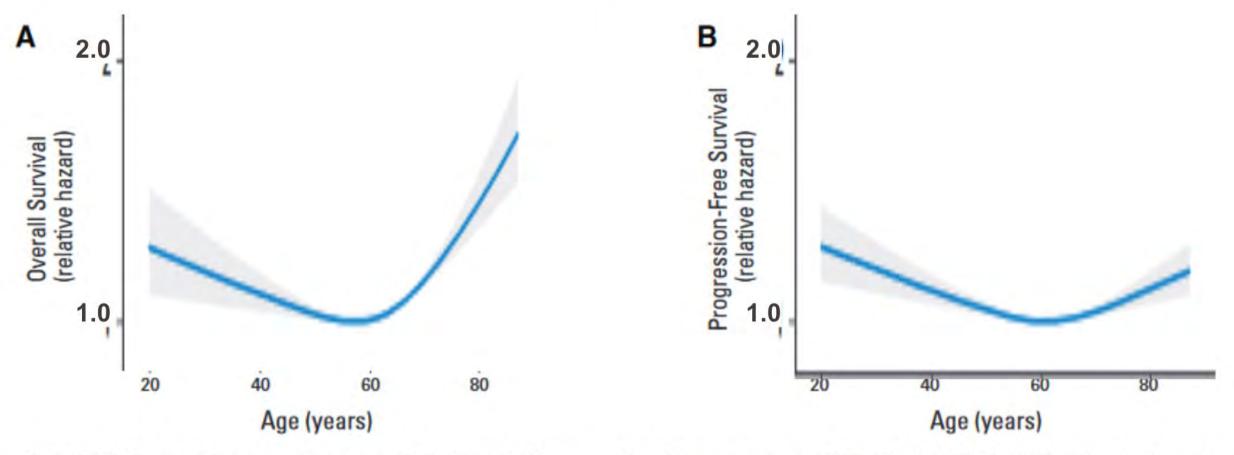
Differences for FLT4, FBXW7, RNF43, LRP1B, APC, PIK3CA, and ATRX mutation rates between racial/ethnic groups and EP300, KRAS, AXIN2, WRN, BRAF, and LRP1B mutation rates by sex.



Deregulated redox homeostasis is a distinct molecular hallmark of early-onset sporadic CRC

Integrated, multi-omics analysis implicate perturbations in:

- NRF2-mediated oxidative stress response,
- glutathione metabolism, and
- the CXCL12-CXCR4 signaling axis, as a molecular phenotype distinct to early-onset sporadic CRC.



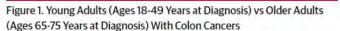
Imbalance in glutathione metabolism

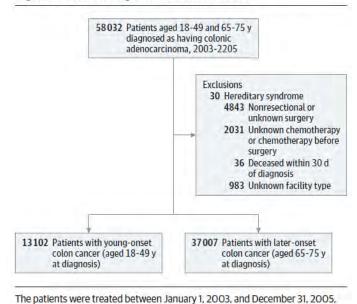
Holowatyj et al. Gastroenterology. 2020.

TREATMENT FOR YOCRC & NEW DEVELOPMENTS

Overall survival and progression-free survival from diagnosis of mCRC is worse for EOCRC patients

20,003 patients from 24 first line studies of mCRC (ARCAD database)


YOCRC: Warrants more 'aggressive' therapy?...


More chemotherapy must be better.

Original Investigation

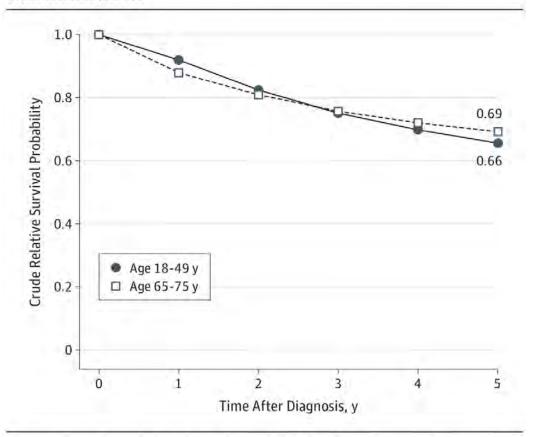
Overtreatment of Young Adults With Colon Cancer More Intense Treatments With Unmatched Survival Gains

Peter J. Kneuertz, MD; George J. Chang, MD, MS; Chung-Yuan Hu, MPH, PhD; Miguel A. Rodriguez-Bigas, MD; Cathy Eng, MD; Eduardo Vilar, MD, PhD; John M. Skibber, MD; Barry W. Feig, MD; Janice N. Cormier, MD, MPH; Y. Nancy You, MD, MHSc

and were reported to the National Cancer Data Base

More Surgery must be better.

The prognostic impact of *RAS* on overall survival following liver resection in early versus late-onset colorectal cancer patients


Alexandre A. Jácome¹, Timothy J. Vreeland², Benny Johnson¹, Yoshikuni Kawaguchi², Steven H. Wei², Y. Nancy You^{2,3}, Eduardo Vilar^{1,4}, Jean-Nicolas Vauthey² and Cathy Eng on the control of the control o

Characteristic	Early-onset $(n = 192)$	Late-onset $(n = 381)$	P value
Median age at diagnosis (range), y	42 (22–49)	59 (50–81)	<0.001
Sex			
Male	99 (52)	236 (62)	0.019
Female	93 (48)	145 (38)	
RAS status			
Mutated	77 (40)	178 (47)	0.154
Wild-type	115 (60)	203 (53)	
BRAF status			
Mutated	5 (3)	4 (1)	0.294
Wild-type	163 (97)	293 (99)	
MSI status			
MSS	150 (98)	204 (97)	0.739
MSI-H	3 (2)	6 (3)	
Tumour location			
Ascending colon	29 (15)	93 (25)	0.012
Transverse colon	8 (4)	16 (4)	0.527
Descending colon	9 (5)	32 (8)	0.122
Rectosigmoid	146 (76)	240 (63)	0.001
Sidedness			
Right	37 (19)	109 (29)	0.015
Left	155 (81)	272 (71)	
CEA level > 10 ng/mL			
Yes	40 (22)	101 (27)	0.213
No	143 (78)	271 (73)	
Bilobar disease	,		
Yes	39 (21)	28 (26)	0.389
No	149 (79)	82 (75)	
≥2 liver lesions		00	
Yes	92 (48)	182 (49)	1
No	98 (52)	193 (51)	

More intensive chemotherapy for YOCRC – did not translate to survival benefits

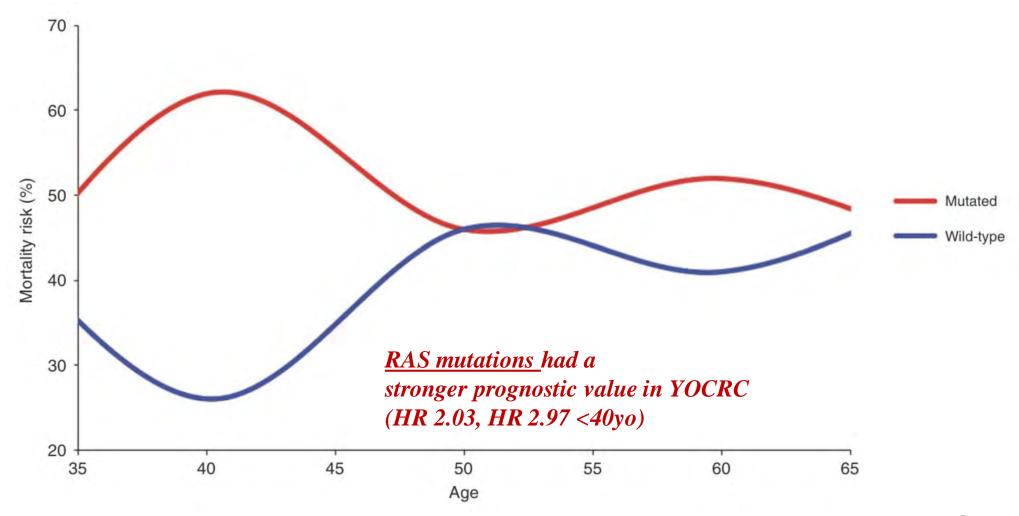
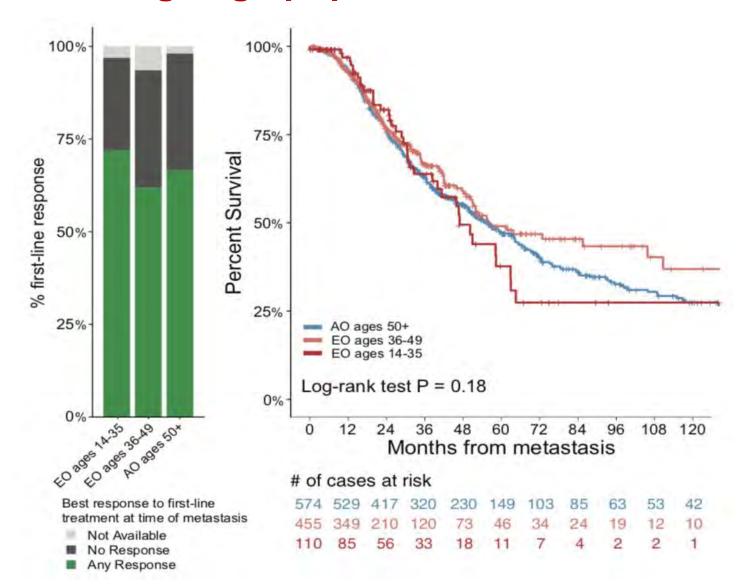

Patients Who Received Chemotherapy	Any Chemotherapy, No. (%)	Odds Ratio for Receiving Chemotherapy (95% CI)	Multiagent Regimens, No. (%)	Odds Ratio for Receiving Multiagent Regimen (95% CI)
Stage I				
Ages 65-75 y (n = 8991)	162 (1.8)	1 [Reference]	52 (43.0)	1 [Reference]
Ages 18-49 y (n = 1926)	109 (5.7)	2.88 (2.21-3.77)	43 (48.3)	1.38 (0.71-2.68)
Stage II Overall				
Ages 65-75 y (n = 11 011)	2748 (25.0)	1 [Reference]	773 (41.7)	1 [Reference]
Ages 18-49 y (n = 3083)	1732 (56.2)	3.93 (3.58-4.31)	670 (54.9)	1.71 (1.48-1.97)
Stage II Low Risk				
Ages 65-75 y (n = 4822)	923 (19.1)	1 [Reference]	313 (39.6)	1 [Reference]
Ages 18-49 y (n = 1636)	826 (50.5)	4.22 (3.70-4.81)	388 (52.5)	1.67 (1.34-2.09)
Stage II High Risk				
Ages 65-75 y (n = 6189)	1825 (29.5)	1 [Reference]	677 (42.7)	1 [Reference]
Ages 18-49 y (n = 1447)	906 (62.6)	3.69 (3.23-4.20)	454 (57.0)	1.77 (1.46-2.14)
Stage III				
Ages 65-75 y (n = 11 202)	8175 (73.0)	1 [Reference]	4209 (59.4)	1 [Reference]
Ages 18-49 y (n = 4780)	4132 (86.4)	2.42 (2.18-2.68)	2590 (71.5)	1.75 (1.58-1.93)
Stage IV				
Ages 65-75 y (n = 5803)	3652 (62.9)	1 [Reference]	2567 (80.4)	1 [Reference]
Ages 18-49 y (n = 3313)	2710 (81.8)	2.74 (2.44-3.07)	2136 (88.6)	1.90 (1.60-2.26)

Figure 2. Crude Relative Survival of Young Adults (Ages 18-49 Years at Diagnosis) vs Older Adults (Ages 65-75 Years at Diagnosis) With Colon Cancers



The unadjusted survival analysis showed slightly inferior 5-year relative survival for the young adults (0.66 vs 0.69, P < .001).

Surgical Outcomes in mCRC: Prognostic impact of *RAS* mutation status CLM in YOCRC

Sporadic YOCRC with very similar response to 1L chemotherapy & survival as average age population

Cercek et al JNCI 21'

FOLFOXIRI in mCRC

Triplet/bev vs doublets/bev in mCRC

Pooled analysis; n = 1697

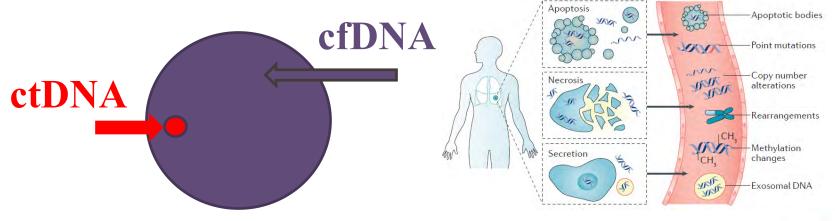
Primary Endpoint: OS

	Triplet/bev	Doublet/bev*	р
ORR (%)	64.5	53.6	p < 0.001
Median OS(mos)	28.9	24.5	p < 0.001
Median PFS (mos)	12.2	9.9	p < 0.001
5-year OS (%)	22.3%	10.7%	P < 0.001

^{*70%} FOLFOX/bev; 30% FOLFIRI/bev

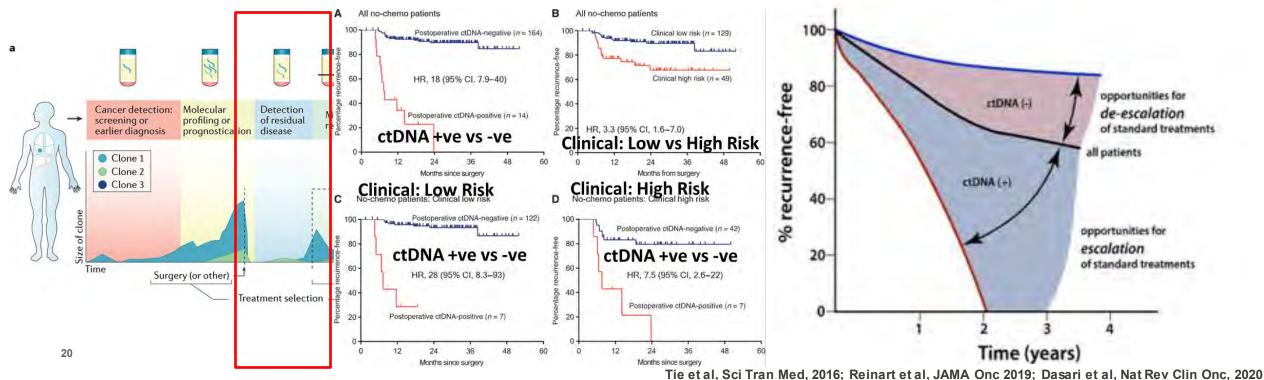
Triplet/bev vs doublets/bev in mCRC Secondary analyses of survival in resected pts

Trial / Endpoint	Triplet/bev	Doublet/bev*	HR (95% CI)
OLIVIA / RFS (mos)	17.1	8.1	0.31 (0.12 – 0.75)
Cremoloni et al, OS (mos)	64	52.6	0.79 (0.5 – 1.24)


How I treat a patient with Advanced Young Onset CRC

- 1. Establish **goals** of therapy & highlight **supportive services** (oncofertility, social work, integrative medicine, supportive care)
- 2. All pts: Precision: Expanded molecular profiling tissue NGS or ctDNA testing
- **3. Early** surgical consultation in stage IV with potential resectable liver or lung metastases; careful use of triplet chemotherapy for conversion (FOLFOXIRI/BEV)
- **4.** <u>1L</u> FOLFOX / FOLFIRI +/- BEV or anti-EGFR (if left sided colon cancer, RAS wt); Immunotherapy if Lynch syndrome/MSI-H; 3 drug chemo if very symptomatic → Clinical trial enrollment
- 5. <u>2L</u> opposite chemotherapy backbone + appropriate biologic / targets (HER2 amp; BRAFV600E; KRAS G12C) / → Clinical trial enrollment
- **6.** <u>3L</u> − TAS-102/BEV or Regorafenib → Clinical trial enrollment

Paradigm Shifts in CRC with impact for Young Onset


- Expanded NGS/ctDNA testing → Key biologic subgroups w/ FDA approved targeted therapies available:
 - MSI-H/BRAFV600E / RAS/RAF wt / HER2 amplification / NTRK fusions
- 2. 'Watch and Wait' in rectal cancer for cCR after upfront chemotherapy/radiation
- **3. Emergence of ctDNA** <u>the future</u>: guided/personalization of therapy in **stage II and III** CRC to avoid toxicity from oxaliplatin based chemotherapy (DYNAMIC, ongoing COBRA & CIRCULATE-US)
- 4. Immunotherapy alone for **dMMR/MSI-H** locally advanced rectal cancer- (avoidance of chemotherapy/radiation/surgery) (n=12; 100% cCR) Caveat: **applies to only a small subset of pts**
- **5. Clinical Trial/Emerging targets** *KRAS G12C combo;* neoantigen vaccine approaches, TCR therapy; **MRD trials**

Circulating tumor DNA (ctDNA) & Minimal Residual Disease (MRD) in Colorectal Cancer

- ctDNA can be detected in the blood following release from tumor cells,
- Fragment size: cfDNA ~167 bp; ctDNA ~20-30 bp shorter
- "real time" analysis; $t\frac{1}{2} \sim 2 3$ hours

cfDNA described > 70 years ago; ctDNA described > 40 years ago

Protocols at MDACC: Targeting CRC MRD with novel approaches

Intervention (INTERCEPT Study Lead)	Setting
COBRA NRG (Dr. Van Morris)	Stage II, immediate post op
CIRCULATE US- NRG / SWOG (Dr. Arvind Dasari)	Stage III / ctDNA+ stage II, immediate post op
BioNTech RNA vaccine (Dr. Van Morris / Dr. Scott Kopetz)	Stage II, III, immediate post op
Chemo de-escalation (Dr. Timothy Newhook)	Stage IV, immediately post op
KRAS vaccine (Dr. Shubham Pant)	Any stage
Cetuximab + NK Cell therapy (Dr. Pia Morelli)	Any stage
Lifestyle Bootcamp (Dr. Alisha Bent)	Any stage
TAS-102 (Dr. Arvind Dasari / Dr. Alisha Bent)	Any stage
CXCR1/2 inhibitor + anti-PD-1 (Dr. Benny Johnson)	Any stage

MD ANDERSON CANCER CENTER

Conclusions

- No major differences in frequency of traditional mutations of interest (KRAS, NRAS, BRAF, HER2 amplification, etc) in YOCRC.
- There are clues to underlying genomic differences noted in sporadic YOCRC biology – that may be related to ethnicity & sex.
- YOCRC treatment should incorporate precision regarding key molecular drivers, goals of therapy – essentially personalized for each patient.
- Clinical trial enrollment should be a part of the cancer journey for <u>all</u> patients with YOCRC.
- Novel de-escalation/escalation & monitoring strategies utilizing circulating tumor DNA (ctDNA) have relevant implications for YOCRC treatment & survivorship.

THE UNIVERSITY OF TEXAS

MDAnderson Cancer Center

Making Cancer History®

Thank you!
Any questions? – bjohnson6@mdanderson.org
@benjohnson1112