How to Get Started in Al

Brian Anderson, MS



For running on your own

* Go to google colab in a chrome browser
* https://colab.research.google.com/notebooks/intro.ipynb

* Click ‘File’ -> ‘open notebook’
* Click ‘GitHub’ tab and search brianmanderson

» Select the Repository Imaging Physics Workshop 1 28 20
* Click ‘Click_Me.ipynb’

* Follow instructions to change Runtime to GPU

* All packages at www.github.com/brianmanderson



https://colab.research.google.com/notebooks/intro.ipynb
http://www.github.com/brianmanderson

Overview

* Machine\Deep learning in imaging
e Convolutions!
* Difference between deep and machine learning

 Creating data from medical images (provided)

* Things | wish I'd known



Imaging (Convolution Nets)



‘Main parts’ of convolution network
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https://neurohive.io/en/popular-networks/vggl6/



https://neurohive.io/en/popular-networks/vgg16/

What is a convolution?

This is a box!

Two horizontal and two parallel lines

— Activation - Max Pooling - Fully Connected ‘




Kernels

What is a convolution?

This is a box!

— Activation - Max Pooling - Fully Connected ‘




Kernels

What is a convolution?
This is a box!

Max Pooling - Fully Connected ‘

Activation




Activation

Max Pooling - Fully Connected ‘




Horizontal and Vertical...

Max Pooling - Fully Connected ‘




Max Pooling

Max value in a 2x2 region




Max Pooling

Max value in a 2x2 region




Max Pooling

Max value in a 2x2 region




Max Pooling

Max value in a 2x2 region




Fully Connected

e “Lay” the voxels out

Input layer

Output




Low specificity..

Also has two parallel lines... . .




(Finally) Deep learning

e Who knows what kernels are needed!

 Why can’t the stupid computer figure it out...




First workshop — DeepBox



What’s the difference for deep learning?

 We don’t set the kernels Random initialization
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Backpropagation!
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Comparison

Machine learning
* Easy to understand kernels

* Have to be clever...

Deep learning
e Difficult to understand kernels
* Works great!

 Have to think about use cases

* (Would a triangle be predicted as
a rectangle or circle?)




Comparison

When you act like you know what's you're
doing =

kernels

cases
dicted as




Specifically into deep learning



Quick overview
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Auto-encoder/Decoder
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Second workshop — Liver model



Biggest time sinks..

Roi names: Liver, liver, liver _bma, liver _9.15.10, etc.

 Data curation!

ABD_LYMPH_036
ABD_LYMPH_08D
MED_LYMPH_002
MED_LYMPH_017
MED_LYMPH_024
MED_LYMPH_029
MED_LYMPH_030
MED_LYMPH_044
MED_LYMPH_055
MED_LYMPH_063
MED_LYMPH_064
MED_LYMPH_067
MED_LYMPH_069

T upsampling 2x2x2

§  Maxpooi 220

Up Sampling to 256x256



Data Curation workbook



Regular UNet
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Up Sampling to 256x256
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What about pre-trained?



Liver Model



Visual Geometry Group (VGG) ImageNet

“15 m|II|on 22,000 categorles

~ 1000 images in 1000 classes

Source
Information

Image Distribution

Source

ImageNet

http://www.image-net.org/synset?wnid= n02977438



http://www.image-net.org/synset?wnid=n02977438

Visual Geometry Group (VGG)
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VG316 Architecture

https://neurohive.io/en/popular-networks/vegl16/



https://neurohive.io/en/popular-networks/vgg16/

Visual Geometry Group (VGG)
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VG316 Architecture


https://neurohive.io/en/popular-networks/vgg16/

Nuances of fine-tuning: what to re-train

VGG Pretrained

Protect these layers

Propagated loss undoes pre-training

512 ;1'1
Training will first be bad..
T vz P ew’ is initialized random weights

1 Max pool 2x2x2

=) Conv 3x3x3

Up Sampling to 256x256




Outputs

blockl convl




Nuances of fine-tuning: what to re-train

What’s best?

val_dice_coef_3D

VGEGE16 fine tune conv? unfrozen\Tensorboard\learnina rate 0.00071\run

0. 980 VGG16_fine_tune_convZ_unfrozen_from_start\Tensorboard\learning_rate_1e-05\run
VGG16_fine_tune_conv3_unfrozen\Tensorboard\learning_rate_T1e-05\run
0.040 VGG16_fine_tune_convd_unfrozen\Tensorboard\leaming_rate_1e-05\run
. VGG16_fine_tune_conv5_unfrozen\Tensorboard\learning_rate_3e-05\run
0.920
0.900
0.830

0.000 1000 2000 3000 4000 5000




Making your own architecture



3 Layersval _dice coef 3D vs Learning Rate

0.401

Optimization Searching N

* Things you can change...

e Architecture
* Layers deep
* # Convolution blocks/# Features

Start simple...

* Hyper-Parameters
* Learning rate, loss, regularization

102 108 107 10-8 10-5 104
Learning Rate



https://github.com/brianmanderson/Finding Optimization Parameters

Finding a good learning rate

* Potentially largest wastes of time...

* Gradually increase LR

* Find min and max LR
Triangular Policy
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https://arxiv.org/pdf/1506.01186.pdf
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https://www.pyimagesearch.com/2019/08/05/keras-learning-rate-finder/



https://www.pyimagesearch.com/2019/08/05/keras-learning-rate-finder/
https://arxiv.org/pdf/1506.01186.pdf
https://github.com/brianmanderson/Finding_Optimization_Parameters

Inverse Transpose Artifacts




Important questions to ask



DSC=1!

Important questions to ask

 Evaluating final algorithm
* Using same loss as before? Dice?

* What is your loss metric? Doesn’t mean Dice is bad!
* Dice, Categorical cross entropy Need other metrics with it



Important questions to ask

2 Classes
Boat
Not-Boat

https://en.wikipedia.org/wiki/Ocean _ _ _
https://www.amazon.co.uk/Tolo-Toys-First-Friends-Dingy/dp/B008PO666U



DSC=1!

Important questions to ask

 Evaluating final algorithm
* Using same loss as before? Dice?

* What is your loss metric? Doesn’t mean Dice is bad!
* Dice, Categorical cross entropy Need other metrics with it

e WITHHELD TEST SET?!
e Qualitative assessment?




slice 2

Oops

* Accuracy: 0.92
* Prediction

use scroll wheel to navigate images
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DSC=1!

Important questions to ask

 Evaluating final algorithm
* Using same loss as before? Dice?

* What is your loss metric? Doesn’t mean Dice is bad!
* Dice, Categorical cross entropy Need other metrics with it

e WITHHELD TEST SET?!
e Qualitative assessment?

* What optimizer are you using?
 Adam, SGD, (maybe RAdam)
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 https://media.giphy.com/media/st83jeYy9L6Ba/giphy.gif (peter
throwing blinds ‘tweaking neural network’)

e https://www.youtube.com/watch?v=bnJ8UpvdTQY (kid can’t say
animal names)



https://media.giphy.com/media/st83jeYy9L6Bq/giphy.gif
https://www.youtube.com/watch?v=bnJ8UpvdTQY

