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For running on your own

• Go to google colab in a chrome browser
• https://colab.research.google.com/notebooks/intro.ipynb

• Click ‘File’ -> ‘open notebook’
• Click ‘GitHub’ tab and search brianmanderson

• Select the Repository Imaging_Physics_Workshop_1_28_20
• Click ‘Click_Me.ipynb’

• Follow instructions to change Runtime to GPU

• All packages at www.github.com/brianmanderson

https://colab.research.google.com/notebooks/intro.ipynb
http://www.github.com/brianmanderson


Overview

• Machine\Deep learning in imaging
• Convolutions!

• Difference between deep and machine learning

• Creating data from medical images (provided)

• Things I wish I’d known



Imaging (Convolution Nets)
Machine\Deep Learning Style



‘Main parts’ of convolution network

• Convolution kernels
• Activation

• Pooling Layers

• Fully-Connected Layers

https://neurohive.io/en/popular-networks/vgg16/

https://neurohive.io/en/popular-networks/vgg16/


What is a convolution?

Kernels

This is a box!

Two horizontal and two parallel lines

Convolution Activation Max Pooling Fully Connected
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Activation

Convolution Activation Max Pooling Fully Connected



Horizontal and Vertical…

Convolution Activation Max Pooling Fully Connected



Max Pooling
Max value in a 2x2 region

Convolution Activation Max Pooling Fully Connected



Max Pooling
Max value in a 2x2 region

Convolution Activation Max Pooling Fully Connected



Max Pooling
Max value in a 2x2 region
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Max Pooling
Max value in a 2x2 region

Convolution Activation Max Pooling Fully Connected



Fully Connected

• “Lay” the voxels out Input layer Output

Elephant!

Convolution Activation Max Pooling Fully Connected



Low specificity..

Also has two parallel lines…

Add four more kernels



(Finally) Deep learning

• Who knows what kernels are needed!

• Why can’t the stupid computer figure it out…



First workshop – DeepBox



What’s the difference for deep learning?

• We don’t set the kernels Random initialization
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How does it learn?



Backpropagation!
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Comparison

Machine learning
• Easy to understand kernels

• Have to be clever…

Deep learning
• Difficult to understand kernels

• Works great!

• Have to think about use cases
• (Would a triangle be predicted as 

a rectangle or circle?)
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Specifically into deep learning



Quick overview

32x32 image

5x5 kernel

28x28 feature maps

Ears
Feet

Fur

Pool Pool

Max pooling

Problem: Convolutions are locally dependent..
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Auto-encoder/Decoder



Second workshop – Liver model



Biggest time sinks..

• Data curation!

Roi names: Liver, liver, liver_bma, liver_9.15.10, etc.



Data Curation workbook



Now…

What about pre-trained?

Regular UNet



Liver Model
Workshop



Visual Geometry Group (VGG)

Source 
Information

Image Distribution

Source Training Validation Test

ImageNet 1,200,000 50,000 150,000

http://www.image-net.org/synset?wnid=n02977438

~ 1000 images in 1000 classes

ImageNet
~15 million, 22,000 categories

http://www.image-net.org/synset?wnid=n02977438


Visual Geometry Group (VGG)

C
at

https://neurohive.io/en/popular-networks/vgg16/

https://neurohive.io/en/popular-networks/vgg16/


Visual Geometry Group (VGG)

Goal

https://neurohive.io/en/popular-networks/vgg16/

https://neurohive.io/en/popular-networks/vgg16/


Nuances of fine-tuning: what to re-train

Propagated loss undoes pre-training

Protect these layers

VGG Pretrained New

Train

Training will first be bad..
All of ‘New’ is initialized random weights



Outputs

block1_conv1

Output

block1_conv1_activation



Nuances of fine-tuning: what to re-train

What’s best?



Making your own architecture



Optimization Searching

• Things you can change…

• Architecture
• Layers deep

• # Convolution blocks/# Features

• Hyper-Parameters
• Learning rate, loss, regularization

Start simple…



Finding a good learning rate

https://www.pyimagesearch.com/2019/08/05/keras-learning-rate-finder/

• Potentially largest wastes of time…

• Gradually increase LR
• Find min and max LR

https://arxiv.org/pdf/1506.01186.pdf

Min Learning Rate

Max Learning Rate

Min LR

Max LR

Triangular Policy

https://github.com/brianmanderson/Finding_Optimization_Parameters

https://www.pyimagesearch.com/2019/08/05/keras-learning-rate-finder/
https://arxiv.org/pdf/1506.01186.pdf
https://github.com/brianmanderson/Finding_Optimization_Parameters


Inverse Transpose Artifacts



Important questions to ask



• Evaluating final algorithm
• Using same loss as before? Dice?

• What is your loss metric?
• Dice, Categorical cross entropy

Important questions to ask
51%

51%

DSC = 1!

Doesn’t mean Dice is bad!
Need other metrics with it



Important questions to ask

2 Classes
Boat
Not-Boat

https://en.wikipedia.org/wiki/Ocean
https://www.amazon.co.uk/Tolo-Toys-First-Friends-Dingy/dp/B008PO666U



• Evaluating final algorithm
• Using same loss as before? Dice?

• What is your loss metric?
• Dice, Categorical cross entropy

• WITHHELD TEST SET?!

• Qualitative assessment?

Important questions to ask
51%

51%

DSC = 1!

Doesn’t mean Dice is bad!
Need other metrics with it

Training Validation Test



Oops

• Accuracy: 0.92

• Prediction



• Evaluating final algorithm
• Using same loss as before? Dice?

• What is your loss metric?
• Dice, Categorical cross entropy

• WITHHELD TEST SET?!

• Qualitative assessment?

• What optimizer are you using?
• Adam, SGD, (maybe RAdam)

Important questions to ask
51%

51%

DSC = 1!

Doesn’t mean Dice is bad!
Need other metrics with it

Training Validation Test
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• https://media.giphy.com/media/st83jeYy9L6Bq/giphy.gif (peter 
throwing blinds ‘tweaking neural network’)

• https://www.youtube.com/watch?v=bnJ8UpvdTQY (kid can’t say 
animal names)

https://media.giphy.com/media/st83jeYy9L6Bq/giphy.gif
https://www.youtube.com/watch?v=bnJ8UpvdTQY

